Высокомолекулярные соединения Серия Б

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ, Серия Б, 2011, том 53, № 3, с. 448–455

=КАТАЛИЗ

УДК 541(64+127):547.241:546.74

ДИБРОМИД N-АЛЛИЛ-*БИС*-(ДИФЕНИЛФОСФИНО)АМИД НИКЕЛЬ КАК КАТАЛИЗАТОР ПОЛИМЕРИЗАЦИИ МЕТИЛМЕТАКРИЛАТА¹

© 2011 г. И.С.Ильичев*, М.В. Москалев*, А.Н. Корнев**, В.В. Сущев**, О.А. Матвеева*, Д. Ф. Гришин*

* Научно-исследовательский институт химии Нижегородского государственного университета им. Н.И. Лобачевского 603950 Нижний Новгород, пр. Гагарина, 23/5

**Учреждение Российской академии наук Институт металлоорганической химии РАН им. Г.А. Разуваева

603950 Нижний Новгород, ул. Тропинина, 49 Поступила в редакцию 29.01.2010 г.

Принята в печать 02.09.2010 г.

Изучены особенности полимеризации MMA в присутствии каталитической системы на основе комплекса $CH_2=CHCH_2N(PPh_2)_2NiBr_2$, содержащего в координационной сфере никеля бидентатный фосфиновый лиганд. Проведен сравнительный анализ активности указанного комплекса и каталитической системы на основе $NiBr_2(PPh_3)_2$ с монодентатным лигандом при атоме никеля в синтезе ПММА. Предложена схема протекания полимеризации в присутствии $CH_2=CHCH_2N(PPh_2)_2NiBr_2$.

Комплексы переходных металлов находят широкое применение в полимеризации в условиях радикального инициирования, включая контролируемый синтез макромолекул [1, 2]. В частности, использование солей никеля, в том числе его фосфиновых комплексов, в ряде случаев позволяет проводить контролируемую радикальную полимеризацию ММА [3-6], бутилметакрилата [4], бутилакрилата [5, 6], метилакрилата [6] и стирола [7], а также сополимеризацию некоторых (мет)акриловых мономеров [5, 6] в относительно мягком температурном интервале (60-85°C). При этом в качестве катализаторов традиционно используют комплексы никеля с монодентатными лигандами, например NiBr₂(PPh₃)₂ [3, 5] и NiBr₂(PBu₃)₂ [6]. Информация о влиянии комплексов никеля с бидентатными фосфиновыми лигандами на закономерности полимеризации виниловых мономеров в литературе практически отсутствует.

Вместе с тем известно, что именно лигандное окружение центрального атома в ряде случаев оказывает заметное влияние на реакционную способность комплексов переходных металлов [8, 9]. Соединения никеля не являются исключением. Так, замена монодентатного трифенилфосфинового лиганда (Ph₃P) на бидентатный 1,2-*бис*-(дифенилфосфино)этан (**dppe**) в комплексах никеля способствует повышению активности и селективности этих соединений как катализаторов в реакции Кумады–Корью [10, 11]. Напротив, наличие лиганда dppe в комплексе никеля dppeNiX₂ уменьшает его каталитическую активность в реакциях присоединения и внедрения алкенов [12].

Исследования низковалентных комплексов никеля в полимеризации виниловых мономеров немногочисленны и в основном касаются использования соединений Ni⁰ в сочетании с бензилгалогенидами для полимеризации стирола [13], комплекса Ni[(P(OPh)₃]₄ для синтеза ПММА в присутствии CCl₄ [14], а также применения Ni(PPh₃)₄ в полимеризации MMA [15].

Ранее показано [16–18], что система NiX₂(PPh₃)₂/Zn в сочетании с йодбензолом обеспечивает протекание полимеризации MMA и стирола в контролируемом режиме до глубоких

Работа выполнена в рамках Федеральной целевой программы "Научные и научно-педагогические кадры инновационной России" (2009–2013 гг.).

E-mail: ilis@uic.nnov.ru (Ильичев Илья Сергеевич).

ДИБРОМИД

Таблица 1. Полимеризация MMA в присутствии All-N(PPh₂)₂NiBr₂/PhI (опыты 1-4 - 6e3 цинка, опыты 5-9 - c цинковой пылью в количестве 5 моль/100 молей MMA) (мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : : Ph-I = 100 : 0.04 : 2.5)

Опыт, №	Время, ч	Выход ПММА, %	$M_n \times 10^{-3}$	$M_w imes 10^{-3}$	M_w/M_n
1	3	4.0	405	1159	2.9
2	11	9.0	568	1461	2.6
3	15	10.0	493	1481	3.0
4	18.5	12.5	615	1740	2.8
5	3	8.5	153	996	6.5
6	6	15.0	228	993	4.3
7	11	25.0	266	1264	4.7
8	15	32.5	317	1515	4.8
9	18.5	37.5	309	1546	5.0

Примечание. Здесь и в табл. 2 [MMA] = 9.15 моль/л, [PhI] = 2.5 моль/100 молей MMA, T = 65°С.

степеней превращения за 5-10 ч при 65-70°С. При этом было установлено, что металлокомплексный катализатор принимает непосредственное участие в стадии роста цепи и оказывает заметное влияние на зависимость состава сополимера от состава мономерной смеси. Полимеризация ММА с участием системы на основе комплекса никеля с бидентатным лигандом (dppeNiBr₂/Zn) протекает значительно медленнее [19], чем в присутствии $NiBr_2(PPh_3)_2$, что обусловлено влиянием бидентатного лиганда (dppe) на реакционную способность комплексов никеля. В настоящей статье приведены результаты исследования полимеризации ММА в присутствии катализатора All-N(PPh₂)₂NiBr₂ (All - аллил), также содержащего в своем составе бидентатный лиганд. Причем в отличие от dppe атомы фосфора в указанном лиганде жестко связаны между собой через атом азота, что может оказывать существенное влияние как на стадию инициирования, так и на возможное участие металлокомплекса в стадии роста цепи. Кроме того, в структуре этого лиганда присутствует аллильный фрагмент, способный активно влиять на радикальные процессы, протекающие в системе.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Иодбензол, гексан, хлороформ — сушили прокаленным хлоридом кальция, перегоняли при атмосферном давлении, галогенпроизводные хранили в темном сосуде [20]. Температура кипения всех растворителей соответствовала литературным данным [21].

Оксид алюминия и NiBr₂·3H₂O (коммерческие продукты квалификации х.ч.) использовали без предварительной очистки.

ММА отмывали от ингибитора 10%-ным водным раствором гидроксида натрия, затем водой до нейтральной реакции, сушили прокаленным хлоридом кальция, очищали вакуумной перегонкой [22].

Комплекс All-N(PPh₂)₂NiBr₂ получен согласно методике [23], комплекс NiBr₂(PPh₃)₂ синтезирован по прописи [24] из NiBr₂ \cdot 3H₂O и трифенил-фосфина в бутаноле. Трифенилфосфин перекристаллизовывали из этанола.

Активирование цинковой пыли осуществляли по Клемменсену [25] с помощью раствора соляной кислоты.

Методика эксперимента

Точные навески цинковой пыли (0.0585 г), All-N(PPh₂)₂NiBr₂ (0.0046 г) помещали в ампулы с магнитной мешалкой, затем добавляли расчетное количество ММА (1.91 мл) и йодбензола (0.05 мл) (табл. 1, опыты 5-9). Ампулу присоединяли к вакуумной установке и трижды дегазировали, применяя для охлаждения жидкий азот. После этого ампулу запаивали и помещали в термостат с температурой 65°С. По истечении заданного времени ампулу вынимали из термостата, вскрывали, декантировали раствор с осадка на дне ампулы, дважды промывали осадок небольшим количеством хлороформа и соединяли полученную жидкость с ранее декантированным раствором. Остаток промывали хлороформом и фильтровали на складчатом фильтре, после чего вливали фильтрат при перемешивании в гексан. При этом полимер выпадал в осадок. Для очистки ПММА от остатков мономера и инициатора его переосаждали из раствора в хлороформе, а для отделения неорганических примесей раствор полимера в хлороформе пропускали через 5-миллиметровый

7 ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 3 2011

Рис. 1. Кривые ММР образцов ПММА, полученных в присутствии системы All-N(PPh₂)₂NiBr₂/Zn/Ph-I. a – Мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : : Zn : Ph-I = 100 : 0.04 : 5: 2.5 (1), 100 : 0.07: 5 : 2.5 (2), 100 : 0.125 : 5 : 2.5 (3) и 100 : 0.04 : 0 : 2.5 (4), выход ПММА 9 (1–3) и 4% (4); б – мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : Zn : Ph-I = 100 : 0.04 : 2.5 : 2.5 (1), 100 : 0.07 : 2.5 : 2.5 (2) и 100 : 0.04 : 0 : 2.5 (3). Выход ПММА 9 (1, 2) и 4% (3). Кривые нормированы на конверсию.

слой крупнозернистого Al₂O₃, нанесенного на фильтр Шотта, и промывали чистым хлороформом. Образцы полимеров сушили в вакууме до постоянной массы.

ММ и ММР полиметилметакрилата определяли методом ГПХ на жидкостном хроматографе "Knauer" (Германия) с линейной колонкой "Linear-2" ("Phenomenex", США). В качестве детектора использовали дифференциальный рефрактометр "RI Detector K-2301" и УФ-детектор с рабочей длиной волны 254 нм. Скорость потока элюента (ТГФ) 1 мл/мин, $T = 25^{\circ}$ С. Для калибровки применяли узкодисперсные стандартные образцы ПММА.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Полимеризацию MMA с использованием комплекса Ni(II) проводили в среде мономера с добавками цинка и йодбензола при 65°C в течение 3 ч. Структурная формула используемого комплекса

Установлено, что при проведении полимеризации MMA в присутствии All-N(PPh₂)₂NiBr₂ и йодбензола как инициатора при мольном соотношении MMA : Zn : Ph-I : [Ni] = 100 : 5 : 2.5 : 0.04 при 65°С за 3 ч конверсия не превышает 10%. При увеличении концентрации никелевого комплекса с 0.04 до 0.125 мол. % выход ПММА за 3 ч практически не изменяется, а при использовании комплекса Ni(II) в концентрации свыше 0.125 мол. % наблюдается понижение выхода полимера. Тем не менее даже в присутствии 0.04 мол. % All-N(PPh₂)₂NiBr₂ в сочетании с цинком и йодбензолом полимеризация ММА протекает до глубокой степени превращения. Так, за 30 ч при 65°С выход ПММА превышает 60%. При этом реакционная смесь затвердевает уже через 10 ч.

Интересно, что, как и в случае с $(PPh_3)_2NiBr_2$ [17], полимеризация MMA с использованием All-N $(PPh_2)_2NiBr_2$ возможна и без применения цинковой пыли. Тогда выход полимера понижается более чем в 2 раза по сравнению с полимеризацией в присутствии цинка. Следовательно, восстановление комплекса никеля цинком приводит к более активному зарождению каталитических центров полимеризации.

Анализ молекулярно-массовых характеристик образцов ПММА, синтезированных на каталитической системе на основе All-N(PPh₂)₂NiBr₂, при различном содержании как комплекса никеля, так и цинка (рис. 1), свидетельствует о том, что ММР полимеров, полученных с добавкой цинковой пыли, имеет бимодальный характер, что позволяет предположить наличие двух параллельных механизмов роста полимерных цепей. При этом высокомолекулярная мода ($M_n = 8 \times 10^5$) практически не изменяется при варьировании содержания никелевого комплекса и цинка и соответствует моде полимера, полученного в отсутствие цинка. Таким образом, при полимеризации ММА в присутствии All-N(PPh₂)₂NiBr₂ протекает процесс, приводящий к образованию высокомолекулярной фракции с участием двухвалентного никелевого комплекса как в случае применения избыточных количеств цинка, так и в его

Опыт, №	Количество металлов (моль/100 молей ММА)		Выход	$M \times 10^{-3}$	M /M
	Zn	Ni	ПММА, %	$m_n \wedge 10$	111 _W /111 _n
1	2.5	0.070	9.5	192	5.9
2	5.0	0.125	8.5	190	7.5
3	2.5	0.125	19	22	2.8
4	5.0	0.125	20	23	2.6

Таблица 2. Полимеризация MMA в присутствии каталитических систем на основе All-N(PPh₂)₂NiBr₂/PhI/Zn (опыты 1 и 2) и NiBr₂(PPh₃)₂/PhI/Zn (опыты 3 и 4)

отсутствие. Увеличение содержания цинка и концентрации никелевого комплекса в системе (рис. 1) приводит к понижению MM низкомолекулярной фракции. Так, повышение концентрации цинка с 2.5 до 5 мол. % вызывает соответствующее уменьшение M_n низкомолекулярной моды ПMMA с 468 × 10³ до 245 × 10³, а высокомолекулярной моды с 1 млн. до 851 × 10³ при мольном соотношении MMA : Ph-I : [Ni] = 100 : 2.5 : 0.04. Аналогично, с ростом концентрации никелевого комплекса с 0.04 по 0.125 мол. % при мольном соотношении MMA : Ph-I : Zn = 100 : 2.5 : 5 наблюдается падение M_n низкомолекулярной моды ПMMA с 245 × 10³ до 105 × 10³.

Ранее показано [17], что система NiBr₂(PPh₃)₂/Zn также вызывает полимеризацию ММА в сравнимых условиях. Для сопоставления активности системы A11-N(PPh₂)₂NiBr₂/Zn и NiBr₂(PPh₃)₂/Zn в табл. 2 приведены результаты полимеризации ММА в присутствии NiBr₂(PPh₃)₂/Zn в условиях, аналогичных для реакции с применением All-N(PPh₂)₂NiBr₂/Zn. Как следует из представленных данных, в рассматриваемом диапазоне концентрации NiL_n конверсия ММА выше в случае применения NiBr₂(PPh₃)₂, чем при использовании комплекса никеля All-N(PPh₂)₂NiBr₂. Таким образом, в сопоставимых условиях активность комплекса с монодентатным лигандом несколько выше, чем производного никеля с бидентатным лигандом.

Для объяснения характера изменения кривых ММР полимеров и вклада каждого из двух механизмов роста цепей была изучена скорость полимеризации ММА на каталитической системе All- $N(PPh_2)_2NiBr_2/Zn/PhI$ с мольным соотношением компонентов 0.04 : 5 : 2.5 и 0.04 : 0:2.5 (100 мол. ч. ММА). Соотношения были подобраны на основании описанных выше результатов опытов и кривых ММР полученных образцов полимера (рис. 1). Поскольку в интервале 0.04–0.125 мол. % никелевого комплекса выход ПММА изменяется незначительно, в дальнейшем мы использовали минимальную концентрацию All- $N(PPh_2)_2NiBr_2$ (0.04 мол. %).

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б

Результаты полимеризации ММА с использованием каталитической системы All- $N(PPh_2)_2NiBr_2/Ph-I$ в отсутствие и с применением цинка приведены в табл. 1. Установлено, что процесс полимеризации протекает равномерно без автоускорения как в случае использования цинка в качестве восстановителя, так и без него (рис. 2a). При этом логарифмическая зависимость отношения начальной концентрации мо-

Рис. 2. Зависимость выхода ПММА (а) и $\ln[[M]_0/[M]_l)$ (б) от времени полимеризации ММА в отсутствие (*1*) и в присутствии цинковой пыли в системе All-N(PPh₂)₂NiBr₂/Zn/Ph-I (*2*). Мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : Zn : Ph-I = $= 100 : 0.04 : 5 : 2.5, T = 65^{\circ}$ C.

том 53

Nº 3

2011

номера $[M]_0$ к текущей $[M]_t$ от времени носит линейный характер (рис. 26); т.е. количество реакционных частиц остается постоянным в течение всего процесса, а порядок полимеризации по мономеру равен единице.

Из полученных кинетических кривых рассчитаны эффективные константы скорости полимеризации при 65°С для обоих рассматриваемых случаев. Так, в первом случае (без цинка) $k_{3\phi} = 1.68 \times 10^{-6} \,\text{л/(моль c)}$, а во втором случае (5 мол. ч. Zn) $k_{3\phi} = 6.91 \times 10^{-6} \,\text{л/(моль c)}$. Следовательно, полимеризация ММА на системе All-N(PPh₂)₂NiBr₂/PhI (без цинка) протекает значительно медленнее.

Кривые молекулярно-массового распределения образцов ПММА, выделенных на разной конверсии мономера, при проведении полимеризации в присутствии All-N(PPh₂)₂NiBr₂ без цинка и с добавкой цинковой пыли представлены на рис. 3. Для первого случая кривые ММР носят унимодальный характер. При этом ММ соответствующих полимеров практически не изменяется с конверсией, что косвенно подтверждает присутствие в системе высокоэффективного регулятора. В рассматриваемом случае им является комплекс All-N(PPh₂)₂NiBr₂, инициирующий полимеризацию MMA за счет генерирования фенильных радикалов из йодбензола (см. схему, приведенную ниже).

В случае полимеризации MMA на аналогичной системе, но с добавкой цинка, наблюдается бимодальное MMP, которое претерпевает изменения с конверсией (рис. 36). Причем, если MM высокомолекулярной моды, как и в предыдущем случае, почти не изменяется, то для низкомолекулярной моды наблюдается активное наращивание цепи. Кроме того, мода высокомолекулярной фракции практически, или полностью, соответствует моде полимера, полученного в отсутствие цинка, как по ММ, так и по доле фракции при нормировке кривых на конверсию. Таким образом, при полимеризации ММА на системе All-N(PPh₂)₂NiBr₂/Zn/PhI реализуется два независимых друг от друга процесса, один из которых протекает на низковалентных никелевых каталитических центрах, а другой с участием двухвалентного All-N(PPh₂)₂NiBr₂.

Установлено, что значения среднечисленной молекулярной массы ПММА линейно возрастают с конверсией мономера (рис. 4). Следовательно, совокупность полученных экспериментальных данных, в том числе линейная зависимость конверсии от времени в полулогарифмических координатах (рис. 2б), смещение низкомолекулярной моды в область высоких ММ с конверсией мономера (рис. 3б), линейная зависимость ММ от конверсии (рис. 4), позволяет предположить протекание полимеризации в режиме "живых" цепей.

На основании анализа приведенных выше и полученных ранее результатов исследований механизма полимеризации в присутствии комплексов никеля с монодентатными лигандами [16] логично предположить, что процессы, протекающие в изучаемой системе, могут быть описаны следующей схемой:

$$All-N(PPh_{2})_{2}NiBr_{2} + Zn \xrightarrow{MeOOC} All-N \xrightarrow{Ph_{2}P} Ni \xrightarrow{Ph_{2}P} COOMe$$

$$I$$

$$I \xrightarrow{PhI} All-N \xrightarrow{Ph_{2}P} Ni \xrightarrow{Ph} Ph^{*} + All-N \xrightarrow{Ph_{2}P} Ni \xrightarrow{Ph} I$$

$$I \xrightarrow{PhI} All-N \xrightarrow{Ph_{2}P} Ni \xrightarrow{I} Ph^{*} + All-N \xrightarrow{Ph_{2}P} Ni \xrightarrow{I} I$$

$$I \xrightarrow{PhI} I \xrightarrow{I} I \xrightarrow{I}$$

$$Ph' + H_2C = C(CH_3) - COOMe \longrightarrow P_n'$$
 (3)

На первой стадии имеет место восстановление двухвалентного никелевого комплекса $L_n Ni^{(II)} Br_2$ до активного нульвалентного катализатора $Ni^{(0)} L_n$

[26, 29]. Полученный восстановленный катализатор I взаимодействует с йодбензолом и образует продукт окислительного присоединения II [26, 30].

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 3 2011

Рис. 3. Кривые ММР образцов ПММА, полученных при 65°С, в отсутствие (а) и в присутствии цинковой пыли в системе All-N(PPh₂)₂NiBr₂/Zn/Ph-I (б). Мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : Zn : Ph-I = = 100 : 0.04: 5 : 2.5. a – Выход ПММА 4 (*I*), 9 (*2*), 10 (*3*) и 12.5% (*4*); б – 8.5 (*I*), 15 (*2*), 25 (*3*), 32.5 (*4*) и 37.5% (*5*). Кривые нормированы на конверсию.

Соединение II в свою очередь при распаде генерирует фенильные радикалы [31, 32], инициирующие радикальную полимеризацию. При этом растущие макрорадикалы (P_n) (реакция (3)) способны обратимо присоединяться к атому никеля с образованием комплекса IV. Обратимое взаимодействие радикала роста с соединением одновалентного никеля III препятствует бимолекулярному обрыву и спонтанному росту MM с конверсией, обусловливая контроль роста цепи в условиях радикального инициирования.

Образование второй моды на кривых MMP может быть объяснено протеканием полимеризации с участием исходного комплекса All- $N(PPh_2)_2NiBr_2$, всегда присутствующего в системе наряду с восстановленным интермедиатом I.

Рис. 4. Зависимость среднечисленной молекулярной массы ПММА от конверсии. Мольное соотношение MMA : All-N(PPh₂)₂NiBr₂ : Zn : Ph-I = 100 : 0.04 : 5 : 2.5, $T = 65^{\circ}$ C.

Сравнительный анализ результатов полиме-MMA на никелевых системах ризации (PPh₃)₂NiBr₂/Zn/PhI и All-N(PPh₂)₂NiBr₂/Zn/PhI с моно- и бидентатными лигандами показал, что вторая система проявляет более низкую активность в образовании ПММА и приводит к получению полимеров с меньшим выходом и бо́льшей ММ по сравнению с аналогичными характеристиками полимеров, синтезированных на системе (PPh₃)₂NiBr₂/Zn/PhI. Наблюдаемые различия в значениях ММ и активностях систем с применением никелевых комплексов (PPh₃)₂NiBr₂ и All-N(PPh₂)₂NiBr₂ вызваны различным количеством растущих цепей при полимеризации ММА для каждой из систем, и это обусловлено несколькими факторами. Первый из них связан с энергетическими и пространственными эффектами образующихся интермедиатов никеля типа L_nNiPhI (расчет энергии связей и валентных углов произведен по методу $B3LYP/LanL2DZ^2$). Так, энергия связи Ni-C в интермедиатах (PPh₃)₂NiPhI и All- $N(PPh_2)_2NiPhI$, образованных в результате окислительного присоединения нульвалентных никелевых комплексов к йодбензолу (схема, соединение II), равна 86.4 и 147.8 кДж/моль соответственно. Поэтому для второго интермедиата выброс фенильных радикалов в объем (схема, реакция (2)) [31, 32] будет затруднен из-за большей прочности связи металл-углерод по сравнению с первым интермедиатом. Кроме того, при разрыве связи Ph-Ni для комплекса (PPh₃)₂NiPhI, в отличие от All-N(PPh₂)₂NiPhI, наблюдается увеличение валентного угла (Р-Ni-Р) на 7 град, благодаря чему уменьшаются пространственные затруднения и достигается некоторый выигрыш в энергии при отщеплении фенильного радикала от атома никеля. Следует также отметить, что ре-

² Расчеты выполнены А.А. Щепаловым.

акция (2) будет сильнее смещена влево из-за большей стабильности интермедиата II по сравнению с соответствующим интермедиатом для (PPh₃)₂NiPhI, что приводит к понижению скорости выхода радикалов в объем и соответственно уменьшению числа растущих цепей. Поэтому активных к полимеризации частиц и радикалов для системы, содержащей All-N(PPh₂)₂NiBr₂, будет генерироваться меньше, чем для системы, содержащей (PPh₃)₂NiBr₂.

Второй фактор, вероятно, связан с химической природой изучаемого комплекса никеля. Поскольку бидентатный лиганд содержит в своем составе кратную связь, то не исключено взаимодействие макрорадикалов с аллильным фрагментом:

Образующийся аддукт включает стабилизированный аллильный радикал, что может вызвать дезактивацию растущего центра и понижение числа растущих цепей. В пользу указанного предположения свидетельствует резкое уменьшение конверсии (вплоть до нуля) при увеличении содержания рассматриваемого комплекса до 1.25 мол. ч., т.е. в этом случае происходит практически полное акцептирование образующихся радикалов. Кроме того, из-за недостаточного избытка цинка по отношению к All-N(PPh₂)₂NiBr₂ активные низковалентные никелевые аддукты, которые способны проводить полимеризацию по механизму последовательного внедрения мономера [16, 18], также не образуются либо образуются в крайне малом количестве, чтобы внести значительный вклад в общий выход ПММА.

В совокупности проанализированные выше факторы влияют на число растущих цепей, которые вносят общий вклад в конверсию MMA на системе All-N(PPh₂)₂NiBr₂/Zn/PhI: значения конверсии в целом заметно ниже, чем при полимеризации с применением комплекса (PPh₃)₂NiBr₂.

Таким образом, впервые изучена активность комплекса All- $N(PPh_2)_2NiBr_2$ в полимеризации MMA. Показано, что процесс, протекающий значительно быстрее в присутствии цинковой пыли, осуществляется в псевдоживом режиме. Сравнительный анализ реакционной способности изу-

ченного комплекса с его монодентатным аналогом (PPh₃)₂NiBr₂ показал, что последний является более активным в полимеризации MMA. Вместе с тем каталитическая композиция на основе комплекса All-N(PPh₂)₂NiBr₂ приводит к образованию полимеров со значительно большей MM по сравнению с процессом, катализируемым (PPh₃)₂NiBr₂.

Авторы выражают благодарность А.А. Щепалову за проведение квантово-химических расчетов.

СПИСОК ЛИТЕРАТУРЫ

- Kamigaito M., Ando T., Sawamoto M. // Chem. Rev. 2001. V. 101. P. 3689.
- Braunecker W.A., Matyjaszewski K. // Prog. Polym. Sci. 2007. V. 32. P. 93.
- 3. Uegaki H., Kotani Y., Kamigaito M., Sawamoto M. // Macromolecules. 1997. V. 30. № 8. P. 2249.
- Granel C., Dubois Ph., Jerome R., Teyssie Ph. // Macromolecules. 1996. V. 29. P. 8576.
- Moineau G., Minet M., Dubois Ph., Teyssie Ph., Senninger T., Jerome R. // Macromolecules. 1999. V. 32. P. 27.
- 6. Uegaki H., Kotani Y., Kamigaito M., Sawamoto M. // Macromolecules. 1998. V. 31. № 20. P. 6756.
- 7. Li P., Qiu K.Y. // Polymer. 2002. V. 43. P. 5873.
- 8. Van Leeuwen P.W.N.M., Kamer P.C.J., Reek J.N.H., Diekers P. // Chem. Rev. 2000. V. 100. P. 2741.
- 9. Tolman C.A. // Chem. Rev. 1977. V. 77. P. 313.
- Kumada M., Tamao K., Sumitani K., Kiso Y., Zembayashi M., Fujioka A., Kodama S.-I., Nakajima I., Minato A. // Bull. Chem. Soc. Jpn. 1976. V. 49. P. 1958.
- 11. Busacca C.A., Eriksson M.C., Fiaschi R. // Tetrahedron Lett. 1999. V. 40. P. 3101.
- Feng C.C., Nandi M., Sambaiah T., Cheng C.-H. // J. Org. Chem. 1999. V. 64. P. 3538.
- 13. Otsu T., Tazaki T., Yoshioka M. // Chem. Express. 1990. V. 5. P. 801.
- Bamford C.H., Sakamoto I. // J. Chem. Soc., Faraday Trans. 1974. V. 70. P. 330.
- Uegaki H., Kamigaito M., Sawamoto M. // J. Polym. Sci., Polym. Chem. 1999. V. 37. P. 3003.
- 16. Гришин Д.Ф., Валетова Н.Б., Ильичев И.С., Прохорова М.Г., Белецкая И.П. // Изв. АН. Сер. Хим. 2006. № 11. С. 2027.
- Ильичев И.С., Валетова Н.Б., Москалев М.В., Гришин Д.Ф. // Кинетика и катализ. 2008. Т. 49. № 4. С. 566.
- 18. Гришин Д.Ф., Ильичев И.С., Валетова Н.Б. // Высокомолек. соед. Б. 2009. Т. 51. № 3. С. 522.
- 19. *Валетова Н.Б., Ильичев И.С., Гришин Д.Ф. //* Журн. прикл. химии. 2010. Т. 83. № 5. С. 843.
- Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. М.: Изд-во иностр. лит., 1958.

ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Серия Б том 53 № 3 2011

- Краткий справочник по химии / Под ред. И.Т. Гороновского, Ю.П. Назарченко, Е.Ф. Некрач. Киев: Наукова думка, 1974.
- 22. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1978.
- Sushev V.V., Kornev A.N., Kurskii Y.A., Kuznetsova O.V., Fukin G.K., Budnikova Y.H., Abakumov G.A. // J. Organomet. Chem. 2005. V. 690. P. 1814.
- 24. Venanzi L.M. // J. Chem. Soc. 1958. V. 2. P. 719.
- 25. *Физер Л., Физер М.* Реагенты для органического синтеза. М.: Мир, 1971. Т. 5.
- 26. Colon I., Kelsey DR. // J. Org. Chem. 1986. V. 51. P. 2627.

- 27. Rayabarapu D.K., Chiou C.-F., Cheng C.-H. // Org. Lett. 2002. V. 4. № 10. P. 1679.
- 28. *Yamamoto T., Yamamoto A., Ikeda S. //* J. Am. Chem. Soc. 1971. V. 93. № 14. P. 3350.
- 29. Zembayashi M., Tamao K., Yoshida J., Kumada M. // Tetrahedron Lett. 1977. V. 47. P. 4089.
- Foa M., Cassar L. // J. Chem. Soc., Dalton Trans. 1975. P. 2572.
- *Tsou T.T., Kochi J.K.* // J. Am. Chem. Soc. 1979.
 V. 101. P. 6319.
- 32. Weston C.W., Verstuyft A.W., Nelson J.H., Jonassen H.B. // Inorg. Chem. 1977. V. 16. № 6. P. 1313.